
Conformality

1 Ray

Denote the complex plane by C and let z denote a typical complex number.
Let a, d ∈ C with d ̸= 0. A ray (half-line) with endpoint a is a subset of C:

R(a, d) = {a+ dt, t ≥ 0, d ̸= 0} (1)

a

d

a+ dt
dt

Figure 1: A ray with endpoint a and direction d.

The opposite ray to (1) is {a − dt, t ≥ 0, d ̸= 0}. It is clear that if b ∈ C
and b ̸= a, then

R(a, b) = {a+ (b− a)t, t ≥ 0} (2)

is a ray with endpoint a which contains b. (Take t = 1.)

2 Angle

Angle ψ from R(a, b) to R(a, c) is seen geometrically (Fig. 2) to be arg(c−
a) − arg(b − a). When angles are regarded as lying in the range (−π,+π],
the above difference (angle) is between −π and +π. And (−π,+π] represents
anticlockwise rotation which will be assumed as the positive rotation.

Angle θ in (−π,+π] is said to be the principal argument of θ, denoted
Arg θ. Since z = |z|eiθ, we have arg z = θ due to the vector representing z
being inclined at angle θ to the positive real axis of C. Thus the measure M
of the angle from b to c at the endpoint of a is

M(R(a, b), R(a, c)) = (Arg(c− a)− Arg(b− a)) modulo 2π.
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Figure 2: Angles measured at a: the rays R(a, b) and R(a, c), the dashed
reference ray, and the angles arg(b − a), arg(c − a), and θ = Arg(c − a) −
Arg(b− a).

3 Tangent to a curve

Let C : z(t), α ≤ β, be a curve, let t0 ∈ (α, β), and suppose z′(t0) exists
and z′(t0) ̸= 0. Let z0 = z(t0). Suppose h > 0 and consider the ray (Fig. 3)

R(z0, z(t0 + h)) = {z : z = z0 + s(z(t0 + h)− z0)/h, 0 ≤ s}.

Since

limh→0+
z(t0 + h)− z0

h
= z′(t0) ̸= 0,

this ray ‘approaches’ the ray

T (z0) = {z : z = z0 + sz′(t0), s ≥ 0}

as h→ 0+.

Similarly, if h > 0, the ray

R(z0, z(t0 − h)) = {z : z = z0 + s(z(t0 − h)− z0)/h, 0 ≤ s}

approaches the ray opposite to T (z0). Of these two rays, we call T (z0) the
tangent ray because its direction agrees with the direction of travel of the
curve C. Thus a curve with z′(t0) ̸= 0 possesses a definite local direction,
which will serve as the geometric basis for defining angles between curves.
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Figure 3: Secants on a point of a curve

Remark 1. The condition z′(t0) ̸= 0 guarantees a well-defined first-order
tangent direction. However, a tangent may still exist at a point where z′(t0) =
0, in which case the direction is determined by higher-order terms.

4 Invariance under regular reparametrization

Theorem 2. The non-vanishing of z′(t0) is preserved under regular reparametriza-
tions of the curve.

Proof. Let τ = ϕ(t) be a C1 change of parameter with ϕ′(t0) ̸= 0, and set
τ0 = ϕ(t0). Define the reparametrized curve

z̃(τ) = z(ϕ−1(τ)).

By the chain rule,
z̃′(τ0) = z′(t0) (ϕ

−1)′(τ0).

Since ϕ′(t0) ̸= 0, the inverse function theorem (see the Remark following
Theorem 6) gives

(ϕ−1)′(τ0) =
1

ϕ′(t0)

Hence

z̃′(τ0) =
z′(t0)

ϕ′(t0)
.

Since ϕ : I ⊂ R → J ⊂ R is a C1 change of parameter, it is a real-
valued function of a real variable, and hence ϕ′(t0) ∈ R. Since a regular
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reparametrization means that the change of parameter has nonzero deriva-
tive, we have ϕ′(t0) ̸= 0, and therefore ϕ′(t0) ∈ R \ {0}.

In particular,
z̃′(τ0) ̸= 0 ⇐⇒ z′(t0) ̸= 0,

since ϕ′(t0) ̸= 0.

Consequently, z̃′(τ0) is a nonzero real scalar multiple of z′(t0), so the
tangent direction is unchanged, and the tangent ray depends only on the
geometric curve and not on the choice of admissible parameter. Hence the
existence of a well-defined first-order tangent direction is intrinsic to the
curve itself.

5 Angle between curves

Definition 3. Let C1 and C2 be (oriented) path segments which intersect
at z0 (Fig. 4). Let T1(z0) and T2(z0) be the tangent rays to C1 and C2,
respectively. The angle from C1 to C2 is defined to be the oriented angle from
the tangent ray T1(z0) to the tangent ray T2(z0).

Figure 4: Two paths (curves), with z(t) having derivatives that are continu-
ous (meaning, the curve traced by z′(t) is not disconnected)

The parametric representations z1(t) and z2(t) of C1 and C2 are arranged
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so that z0 = z1(t0) = z2(t0). Then

∠(C1, C2) = ∠(T1, T2)

= arg T2(z0)− arg T1(z0)

= arg(z2(t0) + sz′2(t0))− arg(z1(t0) + rz′1(t0))

= arg(z0 + sz′2(t0))− arg(z0 + rz′1(t0))

Since T1 and T2 are rays at the endpoint of z0, the angle between them is
arg

(
z0 + sz′2(t0)

)
− arg(z0 + rz′1(t0)) = arg(sz′2(t0))− arg(rz′1(t0)).

And since s and r are scalars,

arg(sz′2(t0))−arg(rz′1(t0)) = arg(z′2(t0))−arg(z′1(t0)), which is Arg
z′2(t0)

z′1(t0)
.

6 Conformality

The term ’conformal’ refers to the property that, for a map from U to V ,
U, V ⊆ C, the angle between the curves in U is the same as the angle between
their image curves in V . For example, under the mapping w = ez, vertical
and horizontal lines map onto circles and radial rays orthogonal to the circles.
This preservation of orthogonality is a manifestation of conformality.

Let C : z(t), α, be a regular (meaning, z′(t) exists for all t ∈ [α, β]) path
segment in C and z0 = z(t0), where α < t0 < β. Let f be differentiable at z0
andf ′(z0) ̸= 0.

Since both z and f are differentiable at t0 and z(t0), respectively, w = f◦z
is differentiable at t0. Thus the image curve inherits its first-order behavior
from both the geometry of the original curve and the local action of the
mapping. Hence

w′(t0) = f ′(z0)z
′(t0). (3)

Now w′(t0) ̸= 0 since f ′(z0) ̸= 0 by assumption and z′(t0) ̸= 0. Therefore the
curve Γ : w(t) through w0 = f(z0) has a tangent ray TΓ(w0). So, Equation
(3) applied to each of two curves C1, C2 in C, gives

∠(Γ1,Γ2) = Arg
z′2(t0)f

′(z0)

z′1(t0)f
′(z0)

= Arg
z′2(t0)

z′1(t0)
= ∠(C1, C2).

Since the angle from C1 to C2 is defined as the angle from T1 to T2,
and since ∠(Γ1,Γ2) = ∠(C1, C2), the mapping by an analytic function f
with f ′(z0) ̸= 0 preserves ‘sense of rotation’ as well as magnitude of angles
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at z0. A mapping having these properties is called conformal at z0. Thus
conformality is precisely the preservation of first-order angular geometry.

Conceptual conclusion. Conformality along a curve requires two inde-
pendent nondegeneracy conditions: the curve must possess a well-defined
first-order direction (z′(t0) ̸= 0), and the mapping must act locally as a
nondegenerate complex scaling (f ′(z(t0)) ̸= 0). When either condition fails,
the first-order directional structure required to define angles collapses and
conformality is lost.

7 Local mapping by an analytic function

From the definition of the derivative, we have

limz→z0

∣∣f(z)− f(z0)

z − z0

∣∣ = |f ′(z0)|.

So, if |z− z0| is small, |f(z)− f(z0)| approximates |z− z0||f ′(z0)|. From this
and conformality we see that if f ′(z0) ̸= 0, then a ‘sufficiently small’ triangle
with vertex at z0 is mapped into a geometrically similar ‘curvilinear’ triangle,
and the lengths of the sides of the triangle are approximately |f ′(z0)| as
long as the corresponding sides of the triangle that is mapped from. Since
w′(t0) = f ′(z0)z

′(t0) implies arg w′(t0) = arg z′(t0)+arg f
′(z0), the mapping

is a rotation through angle arg f ′(z0) combined with an isotropic (same in
all directions) stretching in the ratio |f ′(z0)| : 1. Geometrically, infinitesimal
figures are rotated and uniformly scaled, but not sheared or distorted in
angle. Thus, it behaves locally like the simple mapping w = az near z = 0,
where a = f ′(z0). However, there is a difference. For the mapping w = az,
the rotation (through angle Arg a) and stretching (by |a|) are the same
throughout C, not merely locally.

8 Geometric meaning of z′(t0) ̸= 0 condition.

The requirement z′(t0) ̸= 0 ensures that the path possesses a well-defined
first-order direction at t0. Indeed, writing

z(t) = x(t) + iy(t),
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we have
z′(t0) = x′(t0) + iy′(t0).

When z′(t0) ̸= 0, the first-order expansion

z(t0 + h) = z(t0) + h z′(t0) + o(h)

shows that, to first order, the curve near t0 is a straight segment in the
direction z′(t0). This direction determines the tangent line, the limiting
direction of secants, and the local angle structure required for conformality.

What if z′(t0) = 0? If z′(t0) = 0, then both x′(t0) and y′(t0) vanish, and
the first-order term disappears:

z(t0 + h) = z(t0) + o(h).

Thus the curve has no first-order direction at t0; the point becomes geo-
metrically degenerate. This is a stronger phenomenon than in real calculus:
for a real graph y = f(x), the condition f ′(x0) = 0 still yields a horizontal
tangent, whereas z′(t0) = 0 yields no first-order direction at all.

Higher-order behavior. Let m ≥ 2 be the smallest index such that
z(m)(t0) ̸= 0. Then

z(t0 + h) = z(t0) +
hm

m!
z(m)(t0) + o(hm).

The local geometry is then governed by this higher-order term. If m is odd,
the curve crosses its limiting direction; if m is even, the curve touches and
turns back. In either case, the first-order direction is absent.

9 Functions with nonzero derivative.

We have seen above that a function f with nonzero derivative at a point z0
is conformal on C1 curves for which z′(t0) ̸= 0.

Theorem 4. Let f be a complex function continuous in a neighborhood of
z(t0), and let

z : [α, β] → C
be a C1 regular curve. Then f is conformal at the point z(t0) (along the
curve) if and only if

f ′(z(t0)) ̸= 0 and z′(t0) ̸= 0.
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Proof. Assume first that f ′(z(t0)) ̸= 0 and z′(t0) ̸= 0. Since the curve is
regular at t0, it possesses a well-defined first-order direction given by z′(t0).
The differentiability of f at z(t0) yields the local expansion

f(z(t0 + h)) = f(z(t0)) + f ′(z(t0))
(
z(t0 + h)− z(t0)

)
+ o

(
|z(t0 + h)− z(t0)|

)
.

Thus, to first order, f acts as multiplication by the nonzero complex number
f ′(z(t0)), which preserves angles and orientation. Hence f is conformal at
z(t0) along the curve.

Conversely, suppose f is conformal at z(t0) along the curve. Conformality
requires preservation of the angle between secant directions approaching t0.
If z′(t0) = 0, the curve loses its first-order direction and secant directions
need not converge uniquely, so conformality cannot hold. Thus z′(t0) ̸= 0.

Similarly, if f ′(z(t0)) = 0, then the first-order term in the expansion of
f vanishes and f locally collapses directions, destroying the angle structure.
Hence f ′(z(t0)) ̸= 0.

Therefore both conditions are necessary, completing the proof.

Remark 5 (Analytic functions with nonzero derivative). If f is analytic and
f ′(z0) = 0, then f is not conformal at z0. In this case the first-order term
in the local expansion vanishes, and the behavior of f is governed by the first
nonzero higher derivative. More precisely, if m ≥ 2 is the smallest index
such that f (m)(z0) ̸= 0, then

f(z) = f(z0) +
f (m)(z0)

m!
(z − z0)

m + o
(
|z − z0|m

)
.

Geometrically, the mapping locally behaves like z 7→ zm near z0: directions
are multiplied m-fold and angles are not preserved. Such a point is called a
critical point (or branch point when m ≥ 2). The failure of conformality here
is thus another manifestation of first-order degeneration.

Some analytic functions are not globally injective ( for example ez). By
considering the range of such a function as a Riemann surface, we get inverse
of the function; the domain of the inverse being the Riemann surface. Instead
of extending the range of f to a Riemann surface, we may restrict the domain
of f to sufficiently small neighborhood of z0, provided that f ′(z0) ̸= 0. Then
in this neighborhood the function has a local inverse.

Theorem 6 (Local inverse). Analytic function f has a local inverse at z0 if
and only if f ′(z0) ̸= 0.
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It is sufficient to show that f is injective in a sufficiently small neigh-
borhood of z0. We omit the proof which is in most textbooks on complex
analysis.

Remark 7 (Derivative of the local inverse). Let f be holomorphic in a neigh-
borhood of z0 with f

′(z0) ̸= 0, and set w0 = f(z0). By Theorem 5, f admits a
local inverse f−1 defined in a neighborhood of w0. Differentiating the identity

f−1(f(z)) = z

and applying the chain rule at z = z0 gives

(f−1)′(w0) f
′(z0) = 1,

hence

(f−1)′(w0) =
1

f ′(z0)
.

10 Globally conformal functions

Remark 8 (Functions with nonzero derivative everywhere). Some funda-
mental analytic mappings have nonzero derivative at every point and are
therefore conformal wherever defined. Two basic examples are:

• The exponential function f(z) = ez, for which

f ′(z) = ez ̸= 0 for all z ∈ C.

Thus ez is conformal everywhere in the complex plane.

• The Möbius (fractional linear) transformation

T (z) =
az + b

cz + d
, ad− bc ̸= 0,

for which

T ′(z) =
ad− bc

(cz + d)2
̸= 0

at every point where T is defined. Hence every Möbius transformation
is conformal on its domain (the extended complex plane minus the pole
z = −d/c when c ̸= 0).

These examples illustrate the global version of the local principle estab-
lished above: a mapping is conformal precisely where its derivative does not
vanish.
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